A $-$Family Friendly Approach to Prototype Selection

Corey Pittman Eugene M. Taranta II Joseph J. LaViola Jr.

Interactive Systems & User Experience Lab
Department of Computer Science
University of Central Florida

Intelligent User Interfaces, 2016
Background

- Sketch gesture recognition continues to be a prominent feature in applications
- $-Family recognizers ($1, $P, $N, 1¢) for gesture recognition
 - template matching (1-NN)
 - rapid prototyping
 - low coding overhead
 - error rates on par with state of the art
 - often use large datasets
- Reducing computational overhead is beneficial for mobile devices
Improving Performance

- Execution time and memory usage scale linearly with size of dataset
- Reducing size of dataset is simplest method for decreasing computational overhead
Prototype Selection Methods

• Naive method: Randomly select prototypes
• Two proposed alternatives:
 • Genetic Algorithm (GA)
 • Random Mutation Hill Climb (RMHC)
• More complex alternatives
 • K-medoids
 • Agglomerative Hierarchical Clustering
Genetic Algorithms

- Test the fitness of a population of candidate solutions
- Each candidate solution is a set of prototypes which form a subset of the full dataset
- Fit individuals generate subsequent generations via genetic operators
 - crossover to mix two candidates sets uniformly
 - mutation to change a single prototype in an individual
- Iterate through generations of numerous solutions until an optimal fitness candidate is found
Fitness Evaluation

- A recognizer is constructed for each candidate solution
- Each recognizer is tested on a random selection of samples from the dataset
- The fitness of a candidate is the accuracy of its generated recognizer
Random Mutation Hill Climb

• Similar representation of candidate solution
• Based on Skalak's approach to prototype selection
• Repeatedly mutate a single member of the subset for a predetermined number of iterations
• Store highest fitness individual.
Simple RMHC Example

Best Selection

Candidate Selection

Error Rate

Test Set
1-GDS from Wobbrock et. al. (2007)
Design of Evaluation

- Evaluated effect of selection methods on error rates for three recognizers:
 - Protractor
 - N-Protractor
 - Penny Pincher
- Three datasets were included in evaluation ($-$GDS, SIGN, MMG)
- Four selection methods were included (random, RMHC, GA, full dataset)
- Each recognizer was tested with all datasets, selection methods, and per class template counts ($k = [1, 5]$)
Procedure

- Randomly generated tests by selecting a random subset to be recognized by candidate recognizers
- Attempted to find optimal subset of prototypes to maximize recognition rate
- Repeated test 500 times for each configuration
Error Rates Reduced with Little Tradeoff
Dramatic reduction in computation time and memory

<table>
<thead>
<tr>
<th>Recognizer</th>
<th>1-GDS Mem</th>
<th>1-GDS Time</th>
<th>SIGN Mem</th>
<th>SIGN Time</th>
<th>MMG Mem</th>
<th>MMG Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penny Pincher</td>
<td>98.3</td>
<td>95.7</td>
<td>99.7</td>
<td>99.5</td>
<td>97.5</td>
<td>95.2</td>
</tr>
<tr>
<td>Protractor</td>
<td>98.3</td>
<td>97.7</td>
<td>99.7</td>
<td>99.7</td>
<td>97.5</td>
<td>96.8</td>
</tr>
<tr>
<td>N-Protractor</td>
<td>98.3</td>
<td>97.4</td>
<td>99.7</td>
<td>99.6</td>
<td>97.5</td>
<td>97.7</td>
</tr>
</tbody>
</table>

Percent reduction in memory consumption and runtime for $k = 5$ compared to baseline.
• While the results for the two methods are similar, we recommend RMHC.
 • straightforward to implement
 • mutation operator is exploratory component of GA
• Optimizing the subset of samples can result in near baseline error rates
• Selection methods serve as a preprocessing step to reduce spatial and temporal constraints
Acknowledgments

- NSF career award IIS-0845921
- ISUE lab members
- Anonymous reviewers